Public Relations

On this site you get an overview abou tour published press releases of current research results. If you have any question, please do not hesitate to contact our Service Center Marketing & PR.

EMO Hannover 2017: New potentials with cyberphysical add-on modules

As a showcase for the international market, EMO 2017 presented interesting discussions and promising talks. After six exciting days of the fair, more than 2,200 international manufacturers bid farewell to Hanover.

At the special show "mav industrie 4.0 area" organised by VDW and Konradin Verlag, guests of the EMO Hannover 2017 were given an insight into how they can generate the greatest possible customer benefit in times of digitisation and networking in production. Together with national and international technology leaders, the iwb presented the results of the research project "BaZMod". The main objective of the project was to develop a standardized, manufacturer-independent interface for the integration of cyberphysical add-on modules in machine tools. This standardized interface integrates the mechanical and electrical coupling of the tool and thus forms the basis for bidirectional data exchange and energy transmission. 

With the exhibition of a machine tool of type BA422 from SW with two integrated BaZMod spindles, the functioning of the interface could be presented live to the expert audience. Manufacturers of machine tools, spindles and measuring equipment want to use the BaZMod interface in the future to increase both productivity and flexibility of their products.

Lecture gives insight into the technology developed in the BaZMod project

At the special show "mav industrie 4.0 area", experts from leading research institutes and companies presented their topics to the interested public in a forum. The specialist lecture by Prof. Dr. -Ing. Michael F. Zäh, head of the iwb, also touched the nerve of the time with his topic. In his lecture, he demonstrated how an increasing number of cyberphysical systems can be used on modern machine tools to improve quality and expand machining capabilities.

 

 

TUM researchers work on joining techniques for lightweight materials

The lighter the better. That is the golden rule, at least in the automobile, aircraft and aerospace industries. Materials like fiber-reinforced plastics and light metals are paving the way for components with lower densities. The firm and secure fusion of different materials poses a major challenge, however, which is why researchers from the Technical University of Munich (TUM) are working on ways to improve joining techniques - for example by laser surface treatments.

Lightweight fabrication techniques offer huge potential for industry. Lighter automobiles and aircraft require less fuel, thereby reducing their CO2 emissions. Weight is a particularly important factor in electric cars, as the lighter the vehicle, the greater its range on a single battery charge. Fiber-reinforced plastics are increasingly complementing light metals such as aluminum. Success lies in putting the right material in the right place. Metals are ideal where strong resistance to pressure and low elasticity are required – in screwed connections for example. But in complex products like automobiles, plastics are used alongside metals and both materials need to be joined together at certain points.

Alternative to adhesive and screws

The challenge lies in forming a firm and stable bond between plastic and metal components as efficiently and quickly as possible. "Up until now, adhesives were the favored means of achieving this", Alexander Fuchs from TUM’s Institute for Machine Tools and Industrial Management (iwb) explains. The downside of this process is that it is time-consuming. First of all, the adhesive has to be metered and applied. Then while it is hardening, the components have to be held securely in place. Joining metal and plastic with screws and rivets also has downsides. The connection pieces add extra weight to the component. In addition, there is a risk that the holes will damage the structure and reduce the resistance of the fiber-reinforced plastic.

Laser surface treatment

The iwb is optimizing processes to securely fuse metals and thermoplastic (meltable) plastics by applying heat. The first stage involves texturing the metal surface with a laser beam, producing tiny hollows. André Heckert, doctoral candidate at iwb, is looking at how different laser surface treatments influence the strength of the plastic-metal bond. Laser treatment can produce structures with a depth ranging from nanometers to a few millimeters. "The choice of surface structure for the best bonding properties depends on the material in question," explains Heckert. He has discovered that a groove pattern a few tenths of a millimeter deep is particularly suitable for plastics reinforced with short fibers. By contrast, fine surface structures, which are generated with pulsed laser systems, are highly effective in the case of continuous fiber-reinforced plastics.

Quick and easy joining with NanoFoil

After the laser texturing stage, the metal and plastic materials are pressed together. The metal is now heated until the plastic melts and flows into the hollows. On cooling, a stable bond is formed between the two materials. The scientists are using three different methods to create the necessary heat. Here again, a laser beam can generate enough heat to melt the plastic. In friction press joining, thermal energy is created by the friction of a cylindrical tool rotating on the metal surface under a defined pressure. A completely different and very quick method relies on NanoFoil technology. When it ignites, NanoFoil can briefly reach a temperature as high as between 1,000 and 1,500 °C. This heat bonds the plastic and metal together. One possible application for this technology could be the fast joining of metal cable clips to an aircraft fuselage via a thermoplastic intermediate layer.

More Information